
Journal of Geophysical Research: Atmospheres

Information content of visible and midinfrared radiances
for retrieving tropical ice cloud properties

Kai-Wei Chang1 , Tristan S. L’Ecuyer1 , Brian H. Kahn2 , and Vijay Natraj2

1Department of Atmospheric and Oceanic Sciences, University of Wisconsin-Madison, Madison, Wisconsin, USA,
2Jet Propulsion Laboratory, California Institute of Technology, Pasadena, California, USA

Abstract Hyperspectral instruments such as Atmospheric Infrared Sounder (AIRS) have spectrally dense
observations effective for ice cloud retrievals. However, due to the large number of channels, only a small
subset is typically used. It is crucial that this subset of channels be chosen to contain the maximum possible
information about the retrieved variables. This study describes an information content analysis designed to
select optimal channels for ice cloud retrievals. To account for variations in ice cloud properties, we perform
channel selection over an ensemble of cloud regimes, extracted with a clustering algorithm, from a
multiyear database at a tropical Atmospheric Radiation Measurement site. Multiple satellite viewing angles
over land and ocean surfaces are considered to simulate the variations in observation scenarios. The results
suggest that AIRS channels near wavelengths of 14, 10.4, 4.2, and 3.8 μm contain the most information.
With an eye toward developing a joint AIRS-MODIS (Moderate Resolution Imaging Spectroradiometer)
retrieval, the analysis is also applied to combined measurements from both instruments. While application
of this method to MODIS yields results consistent with previous channel sensitivity studies, the analysis
shows that this combination may yield substantial improvement in cloud retrievals. MODIS provides most
information on optical thickness and particle size, aided by a better constraint on cloud vertical placement
from AIRS. An alternate scenario where cloud top boundaries are supplied by the active sensors in the
A-train is also explored. The more robust cloud placement afforded by active sensors shifts the optimal
channels toward the window region and shortwave infrared, further constraining optical thickness
and particle size.

1. Introduction

Clouds regulate the Earth’s climate or energy balance through interactions with solar and terrestrial radiation
[Liou, 1986]. Cirrus on average cover 16.7% of the globe, and about 35% of cirrus clouds are found in the
tropics within 15∘ of the equator [Sassen et al., 2008, 2009]. In addition to radiatively influencing the climate,
tropical cirrus is also linked to the amount of water vapor entering the stratosphere [Brewer, 1949; Jensen
et al., 1996]. Accurate representations of ice clouds are, therefore, necessary to accurately constrain climate
processes in models. Furthermore, the manner in which clouds interact with the radiation field depends on
their macrophysical and microphysical properties, including water path, particle size, geometric thickness,
and height. These properties, in turn, define the cloud’s shortwave albedo, longwave emissivity, and optical
thickness which are fundamental to its radiative impacts. For this reason, much effort has been devoted to
retrieving these parameters from a variety of satellite remote sensors, as well as surface-based observations
and aircraft in situ sampling.

Passive sensors such as the Atmospheric InfraRed Sounder (AIRS) [Aumann et al., 2003] and the Moderate
Resolution Imaging Spectroradiometer (MODIS) [Barnes et al., 1998] have accumulated over a decade-long
record of observations that is particularly valuable for evaluating clouds in the context of climate processes
and interannual variations. Several retrieval techniques have been developed to make use of these obser-
vations for estimating cloud properties. For example, the split-window technique [Inoue, 1985] retrieves
cloud optical thickness and effective particle size by a lookup-table approach using brightness temperatures
in the window region. For optically thicker clouds, the Nakajima-King approach [Nakajima and King, 1990]
also retrieves optical thickness and effective particle size using a nonabsorbing channel in the visible band
and an absorbing channel in the near-infrared (NIR) region. For retrieving cloud top temperature, the CO2

slicing method [Smith and Platt, 1978] utilizes channels within 13–15 μm to vertically position the cloud and
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is effective particularly for optically thin clouds. More recently, a number of approaches have also been devel-
oped for retrieving cloud macrophysical and microphysical properties simultaneously. One technique that
is often adopted for this purpose is optimal estimation (OE) [Rodgers, 1976], which obtains an estimate that
maximizes the a posteriori probability of the joint probability distribution between a priori estimates and the
observations. OE has been effectively applied to global cloud retrievals using independent observations from
MODIS [Cooper et al., 2007; Wang et al., 2016a] and AIRS [Kahn et al., 2014].

Maximizing the value of combining MODIS and AIRS observations requires careful consideration of the syn-
ergies between these instruments to improve and refine the state of passive retrieval techniques. In principle,
OE provides a framework for optimally combining information from multiple instruments since it allows for
any number of observations, or bands/channels, given that one can appropriately model the observations,
their Jacobians, and the associated uncertainties. However, in practice, modeling the satellite-observed radi-
ances and their Jacobians can be computationally expensive. As such, it is desirable to restrict the retrieval to
use only the channels most sensitive to the desired atmospheric state. Such channel selection is particularly
important for hyperspectral sensors like AIRS, due to the large number of channels (2378), additional com-
putational expense to calculating radiances at finer resolution (∼1 cm−1), and the varying influence of other
parameters such as atmospheric temperature and humidity on each channel. There is, therefore, a need for
objectively selecting optimal channel sets for cloud retrievals that maximize information while minimizing
computation time. An objective way of determining the most crucial channels is through quantifying changes
in information content (IC).

IC can be understood by recognizing that the problem of retrieving cloud properties is an inverse prob-
lem in which the range of possible states is characterized by a probability distribution. Upon obtaining a
measurement, the range of probable states is generally reduced. The IC represents the magnitude of such
reduction. More specifically, given a set of Jacobians that represent the sensitivity of the observations
(radiances) to the retrieval variable, and the observation errors (noise, bias, etc.), IC represents the capability
of an observation to reduce the width of the a priori probability density function (PDF) of possible states.
Applied to spectral channels of spectrometers, this quantity naturally represents the impact of each channel
on the retrieval. For this reason, IC plays a central role in channel selection methodologies [Rodgers, 1996].
Sofieva [2003] demonstrated an IC channel selection approach on measurements from the Global Ozone
Monitoring by Occultation of Stars stellar occultation instrument for finding optimal channel combinations
to retrieve atmospheric optical thickness. The selections of optimal MODIS channels for the retrieval of liquid
or ice cloud properties respectively, were reported in L’Ecuyer et al. [2006] and Cooper et al. [2006]. Sourdeval
et al. [2015] utilized IC to analyze the feasibility of retrieving cloud properties in multilayer cloud configura-
tions. An IC channel analysis was employed by Wang et al. [2016b] to diagnose MODIS channels in an optimal
estimation retrieval.

Several sensitivity studies have examined the effectiveness of infrared radiances for retrieving ice cloud
properties. Chung et al. [2000] analyzed the sensitivity of high-resolution midinfrared radiances to ice cloud
particle size, ice water path, cloud top position, and thickness by varying these cloud properties in radiative
transfer simulations, while Huang et al. [2004] adopted a similar approach to examine the sensitivity of IR radi-
ances toward cloud optical thickness and particle size. Kahn et al. [2004] employed a statistical approach using
empirical orthogonal function analysis to examine the variance of midinfrared radiances due to varying ice
crystal shape, effective radius, ice water path, as well cloud height and thickness.

Similar to such approaches, IC analysis also considers the channel sensitivities through the Jacobian, but has
the added advantage of including multiple error sources, especially those associated with forward modeling.
In addition, IC analysis is especially compatible with optimal estimation, as it considers the error covariances
of the a priori estimates.

In this study we apply an IC-based channel selection to identify the optimal set of AIRS channels for cloud
property retrievals under three scenarios: a stand-alone AIRS algorithm, a combined AIRS-MODIS algorithm,
and a combined active/passive retrieval that further utilizes cloud boundary information from CloudSat and
CALIPSO. AIRS is a hyperspectral infrared spectrometer on board the Aqua satellite with 2378 channels over
wavelengths of 3.74–4.61 μm, 6.20–8.22 μm, and 8.8–15.4 μm [Aumann et al., 2003]. Its spatial resolution is
13.5 km by 13.5 km at nadir and 41 km by 21.4 km at the scan extremes. The AIRS version 6 ice cloud retrieval
product is derived from an OE algorithm, providing estimates of the cloud thermodynamic phase, effective
diameter (De), cloud optical thickness (COT), and cloud top temperature (Tc) at the AIRS footprint resolution
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[Kahn et al., 2014]. The OE algorithm is applied to the 27% of AIRS fields of view that are identified as contain-
ing an ice cloud thermodynamic phase [Jin and Nasiri, 2014; Kahn et al., 2015]. This algorithm uses 59 channels
located within 8–15 μm, selected to include three spectral regions: CO2 slicing channels within 13.2–14.5 μm,
and the window regions between 10–12 μm and 8.8–9.15 μm, manually picked by avoiding strong absorp-
tion lines and noisy channels. Although these spectral regions have been shown to have sensitivity to the
aforementioned cloud properties [Huang et al., 2004], the channels were not optimized through a rigorous
objective channel selection methodology. Also, it is known that some channels are specifically useful for
certain types of clouds. For instance, the 13–15 μm region is effective for obtaining cloud top temperature of
optically thin clouds [Smith and Platt, 1978], whereas for optically thick clouds, such as anvil tops, the 11 μm
brightness temperature is often used as a proxy for its physical temperature.

Here we apply a formal channel selection process to a variety of ice clouds objectively extracted using a clus-
tering algorithm on a database of cloud retrievals from observations of ground radar/lidars deployed by the
U. S. Department of Energy Atmospheric Radiation Measurement (ARM) program [Ackerman and Stokes, 2003].
This diverse collection of cloud states spans a wide range of optical and geometrical thicknesses, particle
size distributions, and heights, allowing optimal channels to be selected for a range of scenes appropriate for
retrievals over the tropics. Satellite viewing geometry is considered through simulations at seven different
viewing angles. Ocean, vegetation, and bare soil surfaces are examined separately to quantify the difference
in optimal channel configuration over distinct land and ocean surfaces. Through considerations of the above
factors and appropriate representations of forward model uncertainties, it is anticipated that the resulting
AIRS channel set will be optimal for ice cloud retrievals in most scenarios. In addition to AIRS, IC channel selec-
tion is also applied to MODIS, to gain insight into how the two instruments can be jointly used for ice cloud
retrievals.

While the wide swaths of AIRS and MODIS provide important sampling, it has been demonstrated that passive
cloud retrievals can benefit from the more precise delineation of cloud boundaries afforded by active sen-
sors. Cooper et al. [2003], for example, showed that having accurate cloud boundary information (cloud top
temperature or height) can reduce the error in retrieved particle size and COT. Conversely, the lack of accu-
rate boundary information can cause large errors. Thus, in addition to exploring an optimized AIRS channel
selection, this study also explores the scenario where passive retrievals may further leverage cloud boundary
information from active radar/lidar measurements. Both AIRS and MODIS fly aboard the Aqua satellite in the
A-Train constellation, which includes CloudSat and CALIPSO. These sensors have obtained multiple years of
collocated observations valuable for extracting high-quality estimates of cloud properties. In this paper, we
examine the impacts of having CloudSat cloud top boundary on the optimal passive channels for ice cloud
retrievals.

Section 2 describes the cloud database and our method for extracting ice cloud types using an established
clustering algorithm. Section 3 provides an overview of the radiative transfer model, its atmospheric inputs,
and the IC selection methodology. Channel selection results for independent AIRS and MODIS retrievals,
combined AIRS+MODIS retrievals, and combined active-passive retrievals are discussed in section 4. The
concluding section 5 summarizes all results and supplies a recommended channel set and their possible
applications.

2. Ice Cloud Database Construction

To account for the dynamic range of ice cloud properties found in the tropics, the IC of all AIRS and MODIS
channels must be evaluated over a wide range of ice cloud types. The ARM program [Ackerman and Stokes,
2003] has deployed active ground-based sensors at multiple stationary sites in the Tropical Western Pacific
(TWP), Lamont, Oklahoma, and in Barrow, Alaska. For the three TWP sites, the “Cloud Properties and Radiative
Heating Rates for TWP” (CPRHR henceforth) data set [Comstock et al., 2013] provides cloud microphysical prop-
erties and heating rate profiles retrieved from ground-based measurements by the millimeter wavelength
cloud radar [Moran et al., 1998] and the micropulse lidar [Spinhirne, 1993]. This study uses vertical profiles of
generalized effective ice particle size (Dge) [Fu, 1996], ice water content (IWC), and cloud phase provided in
CPRHR. The retrieval method used by CPRHR to determine cloud microphysical properties depends on which
of the two instruments detect clouds (radar, lidar, or both). If only radar detects clouds, an empirical relation
based on Hogan et al. [2006] is used to obtain IWC and Dge from the radar reflectivity. If only lidar detects
clouds, the retrieval follows the method outlined by Heymsfield et al. [2005]. If both instruments detect clouds,
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Figure 1. Distribution of cluster center COTs from k = 50, 100, 200, 400, and 700 clusters. Error bars represent the
intracluster standard deviation. Gray dots indicate clusters deemed unusable, due to its standard deviation being
greater than the center value.

the retrieval algorithm of Wang and Sassen [2002] is used. Uncertainties in the CPRHR data set are evaluated
in Comstock et al. [2013], but it is noted that the analysis conducted here is not sensitive to the accuracy of
this input data set. It merely serves to provide a realistic distribution of cloud scenes that spans the range of
regimes expected in the tropics.

For the TWP site at Darwin, Australia, the CPRHR covers approximately 6 years from 2005 to 2011. Performing
IC analysis on all clouds available is not feasible and redundant, as many clouds may have similar features. To
reduce redundancy and provide a tractable set of unique cloud types that span the range of clouds observed
in nature, we use the k-means clustering algorithm, which partitions the data into k (user-specified) clusters.
The k-means algorithm initializes k centroids, assigns each data point to the closest centroid, and then per-
turbs the centroid positions to minimize the sum of Euclidean distance between all data points and their
respective centroids [Wilks, 1997]. For clustering the cloud profiles, we define five features that describe each
cloud: mean De, mean IWC, cloud top height, Tc, and cloud geometric thickness. The clustering analysis is
limited to single-layer ice clouds whose Tc is below 253.15 K; clouds not meeting these criteria are excluded.

The choice of k is based on the criterion that the intracluster spread of COT should be small, so that all clouds in
the cluster are well represented by the cluster center. This is to ensure that the channels selected for each cloud
type can be associated with its occurrence frequency in the channel selection process. As a simple quantitative
test of this requirement, we require that the standard deviation of COT be less than the center value. Figure 1
shows the application of this criterion onto clusters resulting from various choices of k. With relatively smaller
numbers of clusters (k=50, 100, and 200), many clusters have a large standard deviation, and are therefore too
broad for our analysis. Furthermore, choosing a smaller k leaves very few thin cloud clusters, which are among
the most populous and important ice cloud types. Even at k = 400, clusters with narrow COT ranges remain
quite sparse. Through experimentation, it was determined that k = 700 adequately represents the spectrum
of ice clouds in the composite ARM TWP data set.

Figure 2 compares the raw data (before clustering) to the clustering result. Before clustering, there were
approximately 4.14× 105 single-layer clouds of ice phase with temperatures below 253.15 K. After clustering,
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Figure 2. (top row) Density plots of all data before clustering, for geometric thickness versus mean De (left) and Tc
versus mean IWC (right). (bottom row) Scatterplot of cluster centers; gray stars indicate that the cluster was not used
in the simulations due to particle size being outside the valid range of the ice crystal scattering properties. Cluster
used in the IC analysis are represented as stars colored by COT.

using k = 700, the resulting cluster centers span the complete range of cloud properties present in the raw
data set. Due to the limitations of the ice crystal scattering property data set [Baum et al., 2014], which is lim-
ited to De between 10 and 120 μm, 348 out of the 700 clusters were usable (shown as colored stars in Figure 2,
bottom row). The number of clouds included by the 348 clusters is approximately 2.19 × 105. Scatterplots of
cluster centers show that the centers cover a dynamic range comparable to the raw data set in every cloud
property aside from particle size.

3. Channel Selection Using Information Content
3.1. Radiative Transfer Model
A model based on the Vector Linearized Discrete Ordinate Radiative Transfer model (VLIDORT) [Spurr, 2006] is
used to simulate radiances and Jacobians. The High-Resolution Transmission Molecular Absorption (HITRAN)
[Rothman et al., 2009] database was used for gas attenuation, and the treatment of Rayleigh scattering fol-
lows the methodology of Bodhaine et al. [1999]. Line-by-line radiances and Jacobians simulated with this
model were convolved with AIRS and Aqua MODIS spectral response functions (SRF) in order to simulate the
satellite-observed radiances. It is assumed that all simulated AIRS and MODIS radiances are overcast (100%
cloud fraction) and that AIRS and MODIS pixel sizes are the same.

Time-collocated temperature and humidity profiles for the CPRHR data set are obtained from the Merged
Sounding (MERGESONDE) product [Troyan, 2012] also available from ARM. Trace gas profiles come from two
sources: Air Force Geophysics Laboratory atmospheric constituent profiles [Anderson et al., 1986] and the
Monitoring Atmospheric Composition and Climate (MACC) reanalysis [Inness et al., 2013]. The vertical resolu-
tion of input profiles for each simulation was approximately 250 m inside clouds and 1 km outside of clouds
for pressure levels below 50 hPa; above 50 hPa, levels are specified at 30, 20, 10, and 1 hPa.

Radiances and Jacobians were simulated over three surface types: ocean, vegetation, and bare soil. The former
uses ocean spectral emissivities derived from Hale and Querry [1973] and Sidran [1981], while the vegetation
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Figure 3. Spectral emissivities of ocean, vegetation (grass), and bare soil (loamy sand).

and bare soil are represented by grass and loamy sand spectral emissivities from the Advanced Spaceborne
Thermal Emission Reflection Radiometer spectral library [Baldridge et al., 2009]. Spectral emissivities of these
three surface types are shown in Figure 3. All simulations assume daytime conditions with a solar zenith angle
of 20∘, at seven different viewing angles ±45∘, ±30∘, ±15∘, and 0∘, where negative angles indicate that the
sensor is on the same side of the Sun.

3.2. Information Content
The information content analysis conducted here is rooted in the concept of Shannon entropy introduced by
Shannon and Weaver [1949]:

S(P) = −
∑

i

P(xi) log2 P(xi). (1)

The Shannon entropy (SE) is related to the number of possible states of any random variable. Specifically, the
SE in bits is the number of binary digits required to represent the possible range of outcomes. For example,
the outcome of a coin can be represented by one bit since there are only two possible outcomes (heads or
tails). In this case, the SE would be 1. With two coins, the SE increases to 2, and so on. The concept of SE
has been frequently used in remote sensing to quantify the extent to which measurements reduce the SE or,
equivalently, the possible solution space of a retrieved variable. This represents a reduction of uncertainty
or increased knowledge of the variable, so it is desirable to find measurements that can offer the greatest
reduction in SE, i.e., the most IC.

Let the probability density function (PDF) of the cloud property to be retrieved x be P0(x) and P1(x) before
and after making a measurement, respectively. The IC of the measurement H can be formally defined as the
difference in entropy S of the two PDFs:

H = S(P0) − S(P1). (2)

Rodgers [2000] has shown that the multivariate Gaussian distribution for a vector of retrieved variables is

S[P(x)] = c + 1
2

ln |Sx| (3)

where c is a constant and Sx is the error covariance matrix of the retrieved variables. It follows that the IC of a
measurement can be expressed as

H = 1
2

ln |Sa| − 1
2

ln |Ŝ|
= 1

2
ln |SaŜ−1|, (4)

where Sa and Ŝ are the prior and posterior error covariance matrices of the retrieved variables, respectively.
In our analysis, Sa is obtained from the climatological standard deviation of the retrieved cloud properties in
the ARM TWP data set. Given the Jacobian K of the measurement with respect to the retrieved variables and
the total error covariance of the measurements, S

𝝐
, Ŝ can be expressed as

Ŝ =
(

KT S−1
𝝐

K + S−1
a

)−1
, (5)
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Figure 4. Demonstration of channel selection using IC: AIRS information spectrum before channel selection (magenta),
after adding the 936.78 cm−1 channel to the a priori error covariance matrix (teal), and after adding both 936.78 cm−1

and 2616.38 cm−1 channels (maroon). Stars indicate the channel with highest IC during each step.

which is used in equation (4) to calculate the IC of the measurements. We define the Jacobian K as

K =

⎛⎜⎜⎜⎜⎜⎜⎝

𝜕I𝜈1

𝜕 ln(COT)

𝜕I𝜈1

𝜕 ln(De)

𝜕I𝜈1

𝜕 ln(Tc)
𝜕I𝜈2

𝜕 ln(COT)

𝜕I𝜈2

𝜕 ln(De)

𝜕I𝜈2

𝜕 ln(Tc)
⋮ ⋮ ⋮

𝜕I𝜈N

𝜕 ln(COT)

𝜕I𝜈N

𝜕 ln(De)

𝜕I𝜈N

𝜕 ln(Tc)

⎞⎟⎟⎟⎟⎟⎟⎠
(6)

where I𝜈i
is the radiance of channel i at wavelength 𝜈i , COT is cloud optical thickness, De is effective diameter,

Tc is cloud top temperature, and N is the total number of channels.

To apply equation (4) to a single channel, we take the row of K corresponding to the channel number i, ki,
and assume that the observation error covariance is diagonal, so that each channel has an associated error
variance 𝜎−2

i . Then the IC of a single channel can be written as

Hi =
1
2

ln |Sa

(
kT

i 𝜎
−2
i ki + S−1

a

) |
= 1

2
ln |𝜎−2

i SakT
i ki + I|. (7)

We use a sequential selection procedure similar to that described by Sofieva [2003] to identify the optimal set
of channels for retrieving the properties of each cluster at all seven viewing angles over three surface types.
Figure 4 depicts the process graphically. To begin, equation (7) is used to calculate the IC of each channel
(shown as the magenta line in Figure 4). When the IC of all channels are determined, we select the channel
with highest IC (shown as the magenta star). After this first selection, the selected channel is “added” to the a
priori error covariance matrix by

Sa,new =
(

kT
i 𝜎

−2
i ki + S−1

a

)−1
. (8)

We can now calculate the IC of every channel again (teal line in Figure 4) with respect to the updated
a priori error covariance matrix. From the new IC spectrum we can select a channel that yields the most
complimentary information to the first. This process is then repeated to select the desired number of channels.

The number of channels to select may be determined from the degree of freedom for signal (DOF), which can
be calculated as

ds = tr
([

K̃T K̃ + I
]−1

K̃T K̃
)
, (9)
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Figure 5. Uncertainty due to the specified source for (a, c, e, and g) AIRS and (b, d, f, and h) MODIS channels.
Percentages indicate the magnitude of the error standard deviation relative to the mean radiance of the simulations
used to generate each uncertainty.

where K̃ = S
− 1

2
𝝐

KS
1
2
a . The DOF cannot be larger than the number of retrieved variables, which is three in our

case (COT, De, Tc). We found that the DOF of most clusters were typically slightly above 2. Since more than two
channels are needed to take advantage of a DOF above 2, for each cluster we make three channel selections.

3.3. Uncertainty Sources
Channel selection depends on the uncertainties of each channel [L’Ecuyer et al., 2006], as described by the
total error covariance S

𝝐
. This matrix includes the measurement error covariance matrix, which characterizes

the uncertainty in the observed radiances, as well as systematic forward modeling uncertainties, i.e., uncer-
tainties in the simulated radiances caused by inherent errors in the parameters used in the forward model. For
instance, atmospheric thermodynamic profiles taken from any source, whether they derive from radiosondes,
reanalyses, or satellite retrievals, all have associated errors. Radiances forward modeled using these profiles
will unavoidably deviate from the actual observations. Uncertainties of this type can be estimated for each
input source by randomly perturbing the input profiles and using the resulting radiances to estimate the error
covariance matrix. The resulting magnitudes of each forward model uncertainty are summarized as a per-
centage relative to the mean radiances in Figure 5. Other error sources, such as spatial inhomogeneity and
three-dimensional effects, are much harder to estimate and are not treated in this study.

The separate error covariance matrices can be combined as a sum if we assume that all sources are uncorre-
lated with each other. The total error covariance matrix, which contains all uncertainties, is

S
𝝐
= Sy + ST + Swv + Shabit + Saerosol (10)

where Sy is the instrument error covariance matrix, ST represents the uncertainty due to temperature, Swv

due to humidity, Shabit due to ice crystal assumptions, and Saerosol due to aerosols.

To generate the uncertainties due to temperature, we assume that for every temperature profile, the temper-
ature at each layer is a Gaussian-distributed random variable with an associated standard deviation. It is also
assumed that errors in different layers are uncorrelated. We assume that the temperature error standard devi-
ation at each layer is 1.5 K, consistent with documented errors in AIRS temperature profile retrievals at 1 km
resolution [Divakarla et al., 2006]. A temperature profile from the MERGESONDE data set at Darwin, Australia
was used to generate 600 profiles by randomly sampling temperatures at each layer from the appropriate
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Figure 6. Visualization of (top row) AIRS and (bottom row) MODIS error covariance matrices for temperature, humidity, and assumptions in the ice crystal habit
and particle size distribution, calculated using equation (11). In Figure 6 (top row), the white gaps are regions where AIRS does not have channels.

Gaussian distributions. A set of AIRS and MODIS radiances was generated for each of these profiles, and the
covariance matrix of the resulting radiances was then used as the error covariance matrix due to temperature
profile errors. The error covariance matrix includes off-diagonal elements that represent covariances between
errors in different channels.

Figures 5a and 5b show the diagonal elements of this error covariance matrix that represents the uncertainty
due to temperature profile errors. Uncertainties due to temperature are typically less than 3% of the mean radi-
ance for most AIRS channels. Temperature uncertainties are highest around 2200–2400 cm−1 (4.5–4.2 μm),
approaching almost 7% at around 2300 cm−1 (4.35 μm). Uncertainties across all MODIS bands are less than
2% with the highest values reaching 1.5% at 4.5 and 6.7 μm (2200 and 1492 cm−1).

The temperature error covariance matrices, together with the others that have off-diagonal elements, are
visualized in Figure 6. For ease of interpretation, the matrices are plotted in terms of percentages relative to
the mean radiances. Each element is calculated as

ci,j = 100 ∗
⎧⎪⎨⎪⎩
√

𝜎i,j

Īi Īj
𝜎i,j ≥ 0,

−
√

−𝜎i,j

Īi Īj
𝜎i,j < 0,

(11)

where ci,j is the plotted value,𝜎i,j is the (i, j) element in the covariance matrix, and Īi, Īj are the mean radiances of
channel i and j. Plotted this way, the diagonals will have identical values to Figure 5. For the temperature error
covariance matrices, covariances are strongest between the region near 2300 cm−1 (4.3 μm) and 650 cm−1

(15.4 μm).

The diagonals of the error covariance matrix due to uncertainty in the assumed humidity profile were
constructed using water vapor Jacobians from the RTM. Given the specific humidity weighting functions
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Table 1. List of Habit and PSD Combinations for Obtaining the Habit/PSD Uncertainties

Habit Type PSD Type Source of Scattering Properties

General habit mixture Fit to campaign data 1 Baum et al. [2014]

Solid columns Fit to campaign data 1 Baum et al. [2014]

Aggregate columns Fit to campaign data 1 Baum et al. [2014]

Droxtals (lightly roughened) Exponential Yang et al. [2013]

Droxtals (lightly roughened) Hansen-Travis Gamma, b = 0.2 Yang et al. [2013]

Droxtals (lightly roughened) Hansen-Travis Gamma, b = 0.4 Yang et al. [2013]

10-element plates (severely roughened) Exponential Yang et al. [2013]

10-element plates (severely roughened) Hansen-Travis Gamma, b = 0.2 Yang et al. [2013]

10-element plates (severely roughened) Hansen-Travis Gamma, b = 0.4 Yang et al. [2013]

𝜕I𝜈∕𝜕 ln q(zi), at each wavelength 𝜈 the standard deviation can be calculated using

𝜎q,𝜈 =
Nlayer∑

i

𝜕I𝜈
𝜕q(zi)

(
UNC(zi)

100%
q(zi)

)
=

Nlayer∑
i

𝜕I𝜈
𝜕 ln q(zi)

(
UNC(zi)

100%

) (12)

where UNC(zi) is the uncertainty in specific humidity in percentage relative to the specific humidity at height
zi. Based on Divakarla et al. [2006], the uncertainty in specific humidity was assumed to be 20% at the surface
and linearly increases to 50% at 250 hPa. At all altitudes above 250 hpa, the uncertainty was assumed to be
50%. The standard deviations at all wavelengths, calculated by equation (12), make up the diagonal of the
error covariance matrix. To obtain the off diagonals, a method similar to the temperature uncertainty is used,
where 600 profiles were generated by randomly sampling humidity at each layer using the appropriate stan-
dard deviation. The correlation matrix of the radiances were then used to construct the off-diagonal elements
of the error covariance matrix.

The relative magnitude of humidity uncertainties are shown in Figures 5c and 5d. As expected, humidity errors
induce the largest uncertainty in AIRS channels within the water vapor absorption regions between 1200
and 1600 cm−1 (8.3 and 6.3 μm), peaking at around 10%. In the same spectral region, MODIS uncertainties
increase to 8%, but the maximum is 16% at 0.9 μm where water vapor has low transmission [Eldridge, 1967].
Covariances among channels are localized in the water vapor absorption bands, for example, within 1200 and
1600 cm−1 for AIRS (Figure 6). In MODIS channels, these wavelengths have high covariances as well, although
the magnitudes are higher in the near-infrared water vapor absorption bands, such as 1.38, 0.94, and 0.91 μm.

Another source of uncertainty is the assumption of ice crystal habit and particle size distribution (PSD). To
estimate these uncertainties, 30 different clouds ranging from optically thin (0.009) to thick (7.4) from the
clustering analysis were used to simulate radiances. For each cluster, nine different habit and PSD combina-
tions were assumed, as listed in Table 1. The first three habit/PSD types were adopted from Baum et al. [2014],
where the PSD was based on a collection of in situ campaigns. For the last six types, whose scattering prop-
erties are described by Yang et al. [2013], an exponential distribution and two different gamma distributions
were specified. The gamma distributions are based on equation (2.56) of Hansen and Travis [1974]:

n(r) = n0r
1−3b

3 e
r

bre . (13)

where b is a unitless factor controlling the shape of the distribution. To obtain the covariance matrix, the
intracluster mean was first removed from the simulated radiances for every cluster. The resulting radiances
can be then interpreted as the perturbations about the mean due to the assumed habit and PSD, resulting in
270 sets of radiance perturbations that define the uncertainty covariance matrix.

As shown in Figures 5e and 5f, uncertainties are under 2% for AIRS channels within 650 cm−1 to 1630 cm−1

(15.4 to 6.1 μm). Above 2200 cm−1 (4.55 μm), the uncertainty becomes significantly higher in many channels,
notably at 2390 cm−1 (4.2 μm) where the uncertainty peaks at 10%. MODIS channels in the NIR and visible
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suffer more notably from this type of uncertainty. Below 4 μm, all uncertainties are above 5%, exceeding 10%
in many of the visible bands, with the highest value being 30% at 1.375 μm. The magnitude of these uncer-
tainties is mostly consistent with Cooper et al. [2006] who reported that uncertainties of this type are typically
less than 5% in the infrared and grow to around 20–30% in the visible. By comparing the habit/PSD error
covariance matrices of AIRS and MODIS (Figure 6), it is apparent that habit/PSD errors covariances are more
significant in MODIS visible and near-infrared channels.

Since visible and NIR channels are sensitive to aerosols, the presence of aerosols in cloudy scenes should also
be considered a source of uncertainty. We estimated this uncertainty by extracting the mean aerosol optical
thickness (AOT) in the tropics (20∘N, 20∘S) during 2007 from the MACC reanalysis for four different aerosol
types: sea salt, organic carbon, soot, and sulfate. The sum of these four average AOTs was around 0.14. These
AOTs were distributed vertically by assuming an exponential distribution with an e-folding height of 3 km.
The mean radiance perturbation due to aerosols over all clusters were assumed to be the standard deviations
for the diagonal of the aerosol error covariance matrix. Aerosol uncertainties in AIRS channels are less than
0.5% in all channels. Aerosols have a much more prominent effect on MODIS radiances, peaking at around
4.5% at the 0.74 μm band. One source of aerosol that we have not included is dust, which can be a major
source of aerosols in North Africa and the Middle East. However, the AOT value used here (0.14) should be
representative of the mean AOT in the tropics outside of these areas [Hsu et al., 2012]. As such, the aerosol
uncertainty used in this study should be adequate for most scenarios, and the addition of dust is unlikely to
significantly impact the magnitude and spectral characteristics of aerosol uncertainty.

The instrument uncertainty matrix Sy is assumed to be diagonal. The error variances of MODIS solar reflec-
tive bands were derived using the instrument signal-to-noise ratio provided by Xiong et al. [2003a], and the
error variances of MODIS thermal bands were derived from nedT values from Xiong et al. [2003b]. Error vari-
ances of AIRS channels were derived using the nedT values provided in the channel property files available
at https://disc.gsfc.nasa.gov/AIRS/documentation/v6_docs/v6releasedocs-1/v6-chan-prop-files.zip.

4. Optimal Channels for Ice Cloud Retrievals

Using the IC approach, we select optimal channels for retrieving COT, De, and, Tc. All three parameters are fun-
damental to the radiative characteristics, as COT and De controls the scattering and absorption characteristics
of the cloud, and Tc is an indicator of outgoing longwave radiation. The channel selection process described
in the previous section was carried out for every cluster, over all viewing angles, over three surfaces types:
ocean, vegetation, and bare soil.

4.1. Stand-Alone AIRS Retrievals
Results from simulations over ocean are presented as a baseline, since retrievals over ocean are less problem-
atic than over land surfaces. Figure 7 shows the number of times that AIRS channels in each 5 cm−1 spectral
bin are selected from all retrieval simulations over an oceanic surface. The results clearly identify a small sub-
set of preferred spectral ranges for AIRS ice cloud retrievals around 930, 2400, and 2630 cm−1 (10.75, 4.17,
and 3.80 μm). These regions contain the most information overall, independent of COT, but some channels
around 700 cm−1 (14.3 μm) become important for retrieving thinner clouds. The IC selections favored CO2 slic-
ing channels near 2400 cm−1 (4.2 μm) in the shortwave infrared (SWIR) over the midinfrared channels around
700 cm−1. Although in the SWIR region (2380 to 2600 cm−1) the uncertainties due to habit/PSD are higher
than those at other wavelengths, there is less absorption from other gases that could increase uncertainties
at longer wavelengths causing retrievals to favor the SWIR.

It is known that the usage of SWIR radiances includes some complications, such as solar contamination and
non-LTE effects. However, the AIRS version 6 temperature retrieval has experienced improvement in temper-
ature retrievals over version 5 after including and appropriately preprocessing SWIR channels [Susskind et al.,
2014]. Given that temperature sounding retrievals have benefited from the addition of SWIR channels, it is
plausible that these channels can potentially improve cloud temperature retrievals as well.

The order in which the channels were selected is also shown in Figure 7, indicating the relative importance
of each spectral region. CO2 slicing channels were rarely selected first; most of the first selections occurred in
the 2600 and 930 cm−1 (3.8 and 10.8 μm) regions, which suggests that overall the AIRS measurements carry
more information for COT and De than Tc. To verify this, a singular value decomposition (SVD) is applied to K̃,
revealing why each channel is selected.
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Figure 7. (top) Number of AIRS channel selections within each 5 cm−1 bin for ocean surface simulations, over all clusters and all viewing angles, categorized by
COT. (bottom) Total number of AIRS channel selections within each 5 cm−1 bin.

Analysis of

K̃ = S
− 1

2
𝝐

KS
1
2
a (14)

is valuable because it determines the effective rank of the problem [Rodgers, 2000]. SVD is similar to eigen-
value decomposition but can also be applied to nonsquare matrices such as K̃. SVD decomposes a matrix into
a set of singular values and singular vectors. In this application, the singular values give a relative estimate
of precision, while the singular vectors indicate which retrieved variables are being measured. Also, since the
singular vectors are orthogonal, SVD can show whether retrieved variables can be measured independently.
For this reason, using SVD to decompose K̃ reveals what spectral regions were most impactful toward retriev-
ing COT, De, or Tc. In conjunction with the IC channel selection, SVD gives insight into why the channels were
selected and which variables the select channels help retrieve. Singular value decomposition of the matrix K̃
can be expressed as

K̃ = U𝚲VT. (15)

Each column vector of U is the basis in the measurement space and can be interpreted to be “measuring”
the retrieved variables as indicated by the corresponding singular vectors (column vectors of V). The singular
values in 𝚲 represent the weighting of the corresponding basis [Rodgers, 2000]. Figure 8 shows an example of
SVD applied to a cloud with COT of about 1.36. The highest weighted singular vector (first column of V) shows
highest magnitudes for COT and then De, indicating that the corresponding measurement basis contributes
most to these two variables, while its contribution to Tc is much smaller. It is expected that the channels with
highest values in the most heavily weighted basis were the ones picked first in the channel selection process.

In most cases, the singular vectors do not point to just one retrieval variable, making it hard to interpret which
channels impact each variable. However, since the singular vectors are orthogonal, it is possible to apply trans-
formations so that the singular vectors point to one retrieval variable only. Let v⃗1, v⃗2, v⃗3 be the column vectors
of V so that V = [v⃗1 v⃗2 v⃗3]. We would like to find coefficients c⃗ = [c1 c2 c3] such that

c1v⃗1 + c2v⃗2 + c3v⃗3 =
⎡⎢⎢⎣

1
0
0

⎤⎥⎥⎦ or
⎡⎢⎢⎣

0
1
0

⎤⎥⎥⎦ or
⎡⎢⎢⎣

0
0
1

⎤⎥⎥⎦ , (16)
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Figure 8. (left column) Singular vectors and (right column) their corresponding basis in measurement space for a cloud
with a COT of 1.36. The singular vectors indicate which retrieved variables the measurement bases help constrain. In the
top row, for instance, since the singular vector value for Tc is near zero, the measurement basis on the right does not
help retrieve Tc but rather contribute most to COT and then, to a lesser magnitude, to De . The values shown on the top
part are the singular value from 𝚲 of equation (15).

where the vector [1 0 0]T represents a singular vector with a nonzero component only in the direction of
COT, [0 1 0]T one with nonzero component only for De, and so on. Equivalently,

Vc⃗ =
⎡⎢⎢⎣

1
0
0

⎤⎥⎥⎦ or
⎡⎢⎢⎣

0
1
0

⎤⎥⎥⎦ or
⎡⎢⎢⎣

0
0
1

⎤⎥⎥⎦ . (17)

Then c⃗ can be solved by

c⃗ = V−1 ∗
⎛⎜⎜⎝
⎡⎢⎢⎣

1
0
0

⎤⎥⎥⎦ or
⎡⎢⎢⎣

0
1
0

⎤⎥⎥⎦ or
⎡⎢⎢⎣

0
0
1

⎤⎥⎥⎦
⎞⎟⎟⎠ . (18)

By multiplying c⃗ onto U, we get u⃗′ = Uc⃗, where u⃗′ is a measurement basis that corresponds to a singular vector
of [1 0 0]T or [0 1 0]T or [0 0 1]T . The measurement basis u⃗′ isolates each individual retrieval variable. The
weightings (singular values) of each transformed basis may be also calculated by

𝜆′ = |c1|𝜆1 + |c2|𝜆2 + |c3|𝜆3, (19)

where 𝜆1, 𝜆2, and 𝜆3 are the singular values (diagonal elements of V) corresponding to the untransformed
bases. Figure 9 shows the result of applying the transformation onto the vectors of Figure 8. After this trans-
formation, it is now seen that, for this particular cloud, channels near 2600 cm−1 (3.85 μm) primarily constrain
COT. Also, the transformed basis corresponding to COT and De have higher weights relative to that of Tc,
indicating that the channel constraining Tc is likely to have been selected last.

Using the weights calculated from equation (19), the weighted average of measurement bases over all clus-
ters and viewing angles were calculated, as shown in Figure 10. The average bases of AIRS for De and Tc both
have high magnitudes in the SWIR, explaining the tendency of IC to select channels in this spectral region. In
particular, the peak near 2640 cm−1 (3.79 μm) coincides with the most selected channel in Figure 7. Highest
values in the average AIRS basis for COT occur in the window region near 1000 cm−1 (10 μm). In the AIRS
basis for De, channels throughout the 800–1000 cm−1 (12.5-10 μm) have peak magnitudes of around 0.02,
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Figure 9. (left column) Transformed singular vectors and (right column) their corresponding measurement basis after
applying the transformation of equation (18) onto the same cloud as used in Figure 8. After the transformation, the
singular vectors point only to one retrieval variable, and the measurement basis can be interpreted to be contributing to
one variable only.

while the largest magnitude (−0.07) occurs around 2640 cm−1 (3.79 μm). This indicates that although the win-
dow channels are potent for retrieving De, the SWIR channels may be a better alternative. Another feature of
the AIRS De basis is that the thin cloud basis overall has larger magnitudes than the thick cloud basis, implying
that most AIRS channels perform better for retrieving De of thinner clouds. The average AIRS basis for tem-
perature has peaks at 700, 1000, 2200, 2245, 2380, 2630, and 2660 cm−1 (14.3, 10, 4.55, 4.45, 4.2, 3.80, and
3.76 μm). The spectral regions near 700, 2200, 2245, and 2380 cm−1 corresponds to the frequent third channel
selections in Figure 7, which confirms that these channels were selected for their sensitivity to temperature.

Figure 10. Weighted average of (left column) AIRS and (right column) MODIS measurement bases corresponding to (top row) COT,(middle row) De , and
(bottom row) Tc , for thin clouds (cyan), thick clouds (magenta), and all clouds (black).
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Figure 11. (top) Number of MODIS band selections for ocean surface simulations, over all clusters and all viewing angles, categorized by COT. (bottom) Total
number of MODIS band selections. Note that MODIS has two channels, channels 21 and 22, with center wavelengths at 3.96 μm.

Differences between thin and thick clouds are also evident in the bases. The AIRS temperature basis for thin
clouds has larger magnitudes near 700 and 2400 cm−1, while the thick clouds basis has peaks at 1000 and
2600 cm−1 which are windows channels.

4.2. Stand-Alone MODIS Retrievals
MODIS selections were also performed over ocean, as shown in Figure 11. In contrast with AIRS results, the
selected MODIS channels exhibit clear dependence on COT. For instance, the 0.65 μm channel is increasingly
favored as COT increases; the 1.38 μm channel is selected only for very thin clouds; the 13.9 μm (720 cm−1)
channel was most selected for optically thin clouds while the 11.0 μm (909 cm−1) is selected more as COT
increases. The most frequently selected MODIS channel, 3.96 μm (2525.3 cm−1), however, is independent of
COT, like the most selected AIRS channels. Note that MODIS has two channels, channels 21 and 22, centered at
3.96 μm. Since the latter obtained more selections, all subsequent mentions of the 3.96 μm channel is meant
to refer to channel 22. The second most popular MODIS channel, 12 μm (833 cm−1) is generally selected for
clouds with a COT between 0.1 and 3. These results generally agree with the current understanding on sensi-
tivity of these bands to cloud properties. For instance, 1.38 μm has been used for cirrus detection [Gao et al.,
1993], the 1.64 and 3.96 μm channels have been shown to be sensitive to particle size [Lensky and Rosenfeld,
2008], and the 0.65 μm is a nonconservative band often used in Nakajima-King-type retrievals [Nakajima and
King, 1990].

Revisiting the SVD results in Figure 10, the average bases of MODIS also explain the channel selections made
in Figure 11. The three most selected MODIS channels, which are 3.96, 12, and 11 μm, have large values in
the average SVD basis for COT and De. The 3.96 μm channel contributes to both COT and De, while 11 μm
channel contributes mostly to COT and 12 μm channel mostly to De. In the basis for De, 1.64 μm also stands
out, indicating the band’s utility for retrieving particle size. Finally, the average basis for Tc, having high values
at 4.5 and 13.3 μm, peaks near 4.5 μm, showing why IC analysis favors SWIR channels for temperature retrieval,
a result similar to the AIRS selections. Also, similar to the AIRS selections, we found that temperature retrieval
channels were rarely selected in the first iteration (Figure 11).

4.3. Surface and Viewing Angle Dependence
Equivalent results for both AIRS and MODIS retrievals over a grass surface are presented in Figures 12 and 13.
Overall, the differences between selections over grass and ocean are very subtle, suggesting that the spectral
reflectance differences between these two surface types did not alter the IC significantly. Differences in the
AIRS selections between the two surfaces were negligible, while for MODIS, the only notable change is that
over vegetation there are fewer selections at 0.65 and 1.64 μm, and more frequent selections at 4.52 μm.
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Figure 12. Same as Figure 7, except over grass.

The loss of 1.64 μm channels may be due to the stronger reflectivity of grass in this region (Figure 3). Overall,
as both AIRS and MODIS analyses over vegetation were largely similar to the ocean case, we conclude that
there is no need to consider separate channel sets over these two surfaces.

Simulations over bare soil, however, results in some notable differences relative to ocean and vegetation. For
AIRS (Figure 14), the 2620 cm−1 (3.82 μm) channel is almost always selected first over bare soil as opposed to
over grass and ocean where the window region near 1000 cm−1 (10 μm) is preferred. Second, while selections
over grass and ocean favored channels near 2640 cm−1 (3.79 μm), retrievals over bare soil favor slightly longer
wavelengths at 2620 cm−1 (3.82 μm) and channels near 2640 cm−1 were selected mostly for thicker clouds.
Despite these differences in the selection process, the spectral distribution of the optimal AIRS channels
remains largely similar to the two previous surfaces.

In the case of MODIS (Figure 15), IC analysis over bare soil yielded results similar to the grass simulations, where
0.65 and 1.64 μm have fewer selections compared to over ocean, and infrared channels such as 4.52 μm were

Figure 13. Same as Figure 11, except over grass.
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Figure 14. Same as Figure 7, except over bare soil.

favored slightly more. Again, no new channels appeared in the bare soil selections, implying that one set of
channels is suitable for both AIRS and MODIS retrievals over most of the tropical region.

Finally, we found that differences due to varying viewing angles were largely negligible in both AIRS and
MODIS selections. The only notable difference is that in MODIS selections over bare soil, the 0.65 μm channel
is selected more frequently at the expense of the 4.52 μm channel when viewed at 45∘ off nadir.

4.4. Combined AIRS+MODIS Retrievals
By virtue of their distinct spectral coverage and spectral resolution, there is good reason to expect that AIRS
and MODIS may provide complementary information for improved cloud property retrievals. Since these sen-
sors are both on board the Aqua satellite, their spatially and temporally colocated observations are suitable
for a joint retrieval. Here we perform channel selection assuming that both AIRS and MODIS channels are
available to retrieve an observed cloud. In practice, such a retrieval will be complicated by differences in the

Figure 15. Same as Figure 11, except over bare soil.
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Figure 16. Number of channel selections when simultaneously selecting from AIRS and MODIS for ocean surface simulations. (top plot) The number of AIRS
selections in 5 cm−1 bins and (bottom plot) the number of selection for each MODIS channel. Note that the wave number axis of Figure 16 (top plot) has been
reversed to facilitate comparison between AIRS and MODIS.

Figure 17. AIR channel selection over ocean assuming a temperature a priori standard deviation of 2K.
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Figure 18. MODIS channel selection over ocean assuming a temperature a priori standard deviation of 2K.

AIRS and MODIS fields of view, but for simplicity here we assume that the observed cloud is spatially
homogeneous to facilitate the IC analysis.

Optimal channels for combined AIRS+MODIS ice cloud retrievals over ocean are shown in Figure 16. Both
AIRS and MODIS channels were selected, the latter being selected first more often, especially at 11 and 12 μm
(909 and 833 cm−1). MODIS longwave window channels were favored over the equivalent AIRS channels, but
the AIRS SWIR channels near 2640 cm−1 (3.79 μm) outnumber those of MODIS. Of the channels that were
previously found to contribute to Tc in Figure 10, which are the 4.47 and 4.52 μm (2237 and 2212 cm−1) MODIS
channels and the AIRS channels near 2200 and 2400 cm−1 (4.6 and 4.2 μm), AIRS are selected more often. This
is expected as the finer resolution of AIRS channels can vertically locate the cloud more accurately. Finally,
among the visible and NIR MODIS channels, the 0.65 and 1.64 μm are chosen for combined retrievals with the
former being selected frequently for thick clouds. From these results and the previous SVD analysis, it can be
concluded that in a combined retrieval, most of the COT and De information will come from MODIS, while Tc

will almost exclusively be constrained by AIRS.

4.5. Combined Active+Passive Retrievals
As suggested by Cooper et al. [2003], there is incentive to combine active and passive observations for cloud
retrievals because large cloud boundary uncertainties can induce large biases in COT and De retrievals par-
ticularly for thin clouds. Active sensors provide the capability to significantly reduce the uncertainty in cloud
top heights. The CloudSat Cloud Profiling Radar (CPR) [Stephens et al., 2008] has a vertical resolution of 240 m,
which roughly corresponds to a Tc retrieval error of 2 K. To assess IC channel selection while having accurate
cloud top boundary, we adopt the methodology of Cooper et al. [2006], where the Tc error standard devi-
ation is reduced to simulate the presence of accurate cloud boundary information. We assume the a priori
error standard deviation in Tc to be 2 K instead of the 16.2 K (derived from the ARM data set) assumed in the
previous analyses and perform the channel selection process as outlined in section 3.

Having accurate a priori cloud boundary significantly influences the channel selection, as can be seen in
Figures 17 and 18. All channels sensitive to cloud height, such as the CO2 slicing channels, are now scarcely
selected. Instead, channels previously not selected, such as the AIRS channels near 920 cm−1 (10.9 μm) and
2640 cm−1 (3.8 μm) now frequently become the third channel, with the latter primarily selected for thicker
clouds. No new MODIS channels are selected and most temperature-related channels shift to the 3.96 chan-
nel as the third selection. This shows that more accurate a priori cloud boundary can help extract additional
COT and De information from extra channels especially for AIRS.
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Table 2. Channel Sets Obtained From IC Channel Selection, Weighted by Cloud Cluster Populationsa

AIRS Stand-Alone AIRS+MODIS AIRS+Active

cm−1 (μm) Relative Weight cm−1 (μm) Relative Weight cm−1 (μm) Relative Weight

1 2633.55 (3.80) 1.000 1 2633.55 (3.80) 1.000 1 2633.55 (3.80) 1.000

2 928.59 (10.77) 0.312 2 11.03 μm (MODIS) 0.937 2 928.59 (10.77) 0.425

3 972.67 (10.28) 0.261 3 719.17 (13.90) 0.181 3 930.07 (10.75) 0.401

4 2391.09 (4.18) 0.211 4 2391.09 (4.18) 0.144 4 923.46 (10.83) 0.325

5 719.17 (13.90) 0.189 5 2388.15 (4.19) 0.139 5 972.67 (10.28) 0.247

6 984.50 (10.16) 0.182 6 12.02 μm (MODIS) 0.129 6 984.50 (10.16) 0.153

7 2388.15 (4.19) 0.180 7 3.96 μm (MODIS) 0.102 7 936.78 (10.67) 0.136

8 936.78 (10.67) 0.162 8 2390.11 (4.18) 0.089 8 971.46 (10.29) 0.104

9 930.07 (10.75) 0.159 9 0.65 μm (MODIS) 0.085 9 2636.79 (3.79) 0.080

10 2616.38 (3.82) 0.113 10 2229.59 (4.49) 0.075 10 2616.38 (3.82) 0.056

11 2384.25 (4.19) 0.078 11 1.64 μm (MODIS)) 0.067 11 899.62 (11.12) 0.049

12 971.46 (10.29) 0.077 12 2183.31 (4.58) 0.061 12 994.56 (10.05) 0.045

13 2636.79 (3.79) 0.071 13 2384.25 (4.19) 0.054 13 1000.96 (9.99) 0.031

14 2215.50 (4.51) 0.063 14 2636.79 (3.79) 0.040 14 729.266 (13.71) 0.015

15 2214.57 (4.52) 0.051 15 2616.38 (3.82) 0.031 15 2383.280 (4.20) 0.014
aLeftmost column denotes channel selection and weights for stand-alone AIRS retrievals; middle column denotes

selection and weights for combined AIRS-MODIS retrievals; rightmost column is for retrievals combining active sensors
and AIRS. The weights are relative to the highest weighted channel in each category, so that the channel with highest
weight has a relative weight of unity. Only the first 15 highest weighted channels are shown. Channels colored green
indicate weights favoring thin clouds (COT < 1), blue indicates those favoring clouds with 1 < COT < 3, and orange
indicates those favoring thick clouds (COT > 3).

5. Conclusion

This study applied an objective channel selection methodology utilizing IC to iteratively select optimal chan-
nels with the most IC, for tropical ice cloud retrievals under a range of conditions. The complete range of ice
cloud types sampled in multiple years at the ARM TWP site is used to extract a set of cloud clusters expected
to represent the full dynamic range of optical thickness, effective diameter, cloud top height, and geometric
thickness in the tropics. This ensures that the selected channels will be appropriate for most ice clouds found
in the tropics. While issues due to cloud inhomogeneity are important in actual retrievals, for this study the

Figure 19. Relative weight of AIRS channels for (a) all clouds, (b) clouds
with optical thickness less than 1, and (c) clouds with optical thickness
larger than 3.

simulated radiances were assumed to
be overcast through a plane-parallel
RTM, and pixel sizes of AIRS and MODIS
are assumed to be the same. Analy-
sis of stand-alone AIRS retrievals favors
SWIR channels, which were shown to
be sensitive to COT and Tc through
SVD analysis. AIRS SWIR and long-
wave CO2 slicing channels are selected
with comparable weight. Because of
this, it is suggested that one should
favor the longwave CO2 slicing chan-
nels, in order to avoid non-LTE effects
around 4.3 μm. However, it has been
shown that the inclusion of SWIR CO2

slicing channels aid AIRS temperature
retrievals, which suggests that it might
be worthwhile to include these chan-
nels for cloud temperature retrievals,
provided that the proper correction
for non-LTE effects are applied.
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In the AIRS-only, MODIS-only, as well as AIRS+MODIS channel selections, the channel with highest IC rarely
corresponds to cloud temperature information, echoing the finding of Cooper et al. [2003] which suggests
that large errors in cloud boundaries will lead to significant uncertainties in other retrieved variables. Adding
accurate cloud top boundary information from active sensors allows additional channels to be selected to
improve COT and De retrievals. The results suggest that channel choices in presence of accurate cloud bound-
aries may not be as simple as taking away temperature retrieval channels but rather may allow new channels
to contribute to COT and De retrievals owing to reduce uncertainty in cloud placement.

Having considered various permutations of satellite retrieval scenarios through varying surface type, viewing
geometry, and cloud type, it is worthwhile to compile an optimal channel set from these IC analyses. Since the
purpose of this study is to find the optimal channels for the most frequent cloud scenes, it is desirable to pick
channels that contain the greatest information for clouds with larger populations, i.e., that are more common.
Clustering analysis gives the occurrence frequency of each cloud type, which is used as weighting for the
channel selection. Each cloud cluster center (used to represent a cloud type) has an associated population Nk

representing the number of cloud profiles belonging to cluster k. We weight each channel by the number of
clouds in each cluster,

W𝜈 =
K∑
k

Nkf𝜈(k), (20)

where

f𝜈(k) =

{
1 if channel 𝜈 is selected for cluster k,

0 if channel 𝜈 is not selected for cluster k,
(21)

W𝜈 is the weighting of the channel at wavelength 𝜈, and K is the number of cloud types obtained from the
clustering analysis. Such a weighting scheme gives preference to channels useful for clouds that occur more
frequently. By using this weighting in conjunction with the channels selected objectively through IC analysis,
we propose a recommended set of channels based on the IC channel selection.

The list of channels most heavily weighted for ice clouds retrievals is shown in Table 2, for three different
retrieval scenarios, and Figure 19, categorized by COT. We find that for clouds with COT greater than 3, the CO2

slicing channels around 700 and 2200 cm−1 (14.3 and 4.55 μm) have less weight than that of thinner clouds,
indicating that these channels are useful mostly for thinner clouds. Conversely, within the window regions
between 900 to 1000 cm−1 (11.1 to 10 μm) have larger weights for COT > 3. Aside from these differences,
the spectral distribution of weighting is largely the same between the two COT categories. Based on this
weighting, Table 2 provides a succinct channel set that is applicable to ice cloud retrievals over a wide range of
scenes. Relative to the 59 channels used in the AIRS version 6 ice cloud retrieval [Kahn et al., 2014], the channel
set presented in Table 2 could potentially reduce computational expense, provided that retrieval experiments
show that these channels can retrieve ice cloud properties with comparable accuracy to the retrievals done
using the version 6 channel set.

In summary, this study has incorporated a large collection of observed ice cloud morphologies, together
with varying satellite geometry and surface types, to obtain optimal channel sets for tropical ice cloud
retrievals under three scenarios: a stand-alone AIRS algorithm, a combined AIRS-MODIS algorithm, and a com-
bined active/passive retrieval that further utilizes cloud boundary information from CloudSat and CALIPSO.
Although this paper has demonstrated the utility of IC for channel selection and analysis, one of the drawbacks
of IC channel selection is the difficulty of properly representing uncertainties. While some uncertainties, such
as ones due to temperature and humidity, are relatively straightforward to model, other error sources, such
as non-LTE [Strow et al., 2006], spatial inhomogeneity [Kahn et al., 2015], and 3-D effects [Fauchez et al., 2005]
present significant challenges. Despite this drawback, IC channel selection provides a more robust assess-
ment of optimal retrieval channels than simpler sensitivity analyses because it considers multiple sources of
forward model uncertainties and prior knowledge of retrieved variables. The channel sets we have presented
can serve as a guideline for optimal estimation ice cloud retrievals and will soon be tested in the AIRS version
6 algorithm.
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